Blueberry Research
The U.S. Highbush Blueberry Council (USHBC) funds research studies that are based on sound science and are conducted by autonomous researchers at well-established institutions using rigorous research methodology. All publications of research studies are written by and submitted to peer-reviewed journals by the researcher, independent of the USHBC.
The following scientific research papers provide more details on the role that blueberries may play in promoting good health. Click on the category titles to view in-depth blueberry research. When you click a link, you’ll be leaving the USHBC website.
-
Wang H, Liu J, Li T, Liu RH. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct. 2018; 9:5273-5282.
nih.gov
-
Schrader MA, Hilton J, Gould R, Kelly VE. Effects of blueberry supplementation on measures of functional mobility in older adults. Appl Physiol Nutr Metab. 2015; 40(6):543-549.
nih.gov
-
Yang H, Pang W, Lu H, Cheng D, Yan X, Cheng Y, Jiang Y. Comparison of metabolic profiling of cyanidin-3-O-galactoside and extracts from blueberry in aged mice. J Ag Food Chem. 2012; 59(5):2069-2076.
nih.gov
-
Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, Huang Y, Yu H, Chen Z. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol. 2012; 47(2):170-178.
nih.gov
-
Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell. 2006; 5(2):59-68.
nih.gov
-
Lagha AB, Howell A, Grenier D. Highbush blueberry proanthocyanidins alleviate Porphyromonas gingivalis-induced deleterious effects on oral mucosal cells. Anaerobe. 2020, 65:102266
nih.gov
-
Lagha AB, LeBel G, Grenier D. Dual action of highbush blueberry proanthocyanidins on Aggregatibacter actinomycetemcomitans and the host inflammatory response. BMC Complement Altern Med. 2018; 18(1):10.
nih.gov
-
Shen X, Sun X, Xie Q, Liu H, Zhao Y, Pan Y, Hwang C, Wu VCH. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control. 2014; 35:159-165.
usda.gov
-
Salaheen S, Almario JA, Biswas D. Inhibition of growth and alteration of host cell interactions of Pasteurella multocida with natural byproducts. Poult Sci. 2014; 93(6):1375-1382.
nih.gov
-
Park YJ, Biswas R, Phillips RD, Chen J. Antibacterial activities of blueberry and muscadine phenolic extracts. J Food Sci. 2011; 76(2):M101-M105.
nih.gov
-
Ofek I, Goldhar J, Sharon N. Anti-escherichia coli adhesin activity of cranberry and blueberry juices. Adv Exp Med Biol. 1996; 408:179-83.
PubMed.gov
-
Ma L, SunZ, Zeng Y, Luo M, Yang J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int J Mol Sci. 2018; 19(9):E2785.
nih.gov
-
Kim M, Na H, Kasai H, Kawai K, Li Y, Yang M. Comparison of blueberry (Vaccinium spp.) and vitamin C via antioxidative and epigenetic effects in human. J Cancer Prev. 2017; 22(3):174-181.
nih.gov
-
Nair AR, Manappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immunce cell levels in adults with metabolic ksyndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017; 8(11):4118-4128.
nih.gov
-
Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017; 217:773-781.
nih.gov
-
Huang W, Zhu Y, Li CH, Sui Z, Min W. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid Med Cell Longev. 2016; 2016:1591803.
nih.gov
-
Contreras RA, Kohler H, Pizarro M, Zuniga GE. In vitro cultivars of Vaccinium corymbosum L. (Ericaceae) are a source of antioxidant phenolics. Antioxidants. 2015; 4(2):281-292.
nih.gov
-
Diaconeasa Z, Leopold L, Rugina D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci. 2015; 16(2):2352-2365.
nih.gov
-
Pranprawit A, Heyes JA, Molan AL, Kruger MC. Antioxidant activity and inhibitory potential of blueberry extracts against key enzymes relevant for hyperglycemia. J Food Biochem. 2015; 39(1):109-118.
Journal of Food Biochemistry
-
Kraujalyte V, Venskutonis PR, Pukalskas A, Cesoniene L, Daubaras R. Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes. Food Chem. 2015; 188:583-590.
nih.gov
-
Diaconeasa Z, Leopold L, Rugina D, Ayvaz H, Socaciu C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci. 2015; 16(2):2352-2365.
nih.gov
-
Tan D, Liu Y, Shi L, Li B, Liu L, Bai B, Megn X, Hou M, Liu X, Sheng L, Luo X. Blueberry anthocyanins-enriched extracts attenuate the cyclophosphamide-induced lung toxicity. Chem Biol Interact. 2014; 222:106-111.
nih.gov
-
Blacker BC, Snyder SM, Eggett DI, Parker TL. Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation. Br J Nutr. 2013; 109(9):1670-1677.
nih.gov
-
Wang SY, Camp JM, Ehlenfeldt MK. Antioxidant capacity and -glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars. Food Chem. 2012; 132(4):1759-1768.
sciencedirect.com
-
Wang SY, Chen H, Camp MJ, Ehlenfeldt MK. Flavonoid constituents and their contribution to antioxidant activity in cultivars and hybrids of rabbiteye blueberry (Vaccinium ashei Reade). Food Chem. 2012; 132(2):855-864.
sciencedirect.com
-
Johnson MH, de Mejia EG. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. J Food Sci. 2012; 71(1):C141-148.
nih.gov
-
Bornsek SM, Ziberna L, Polak T, Vanzo A, Ulrih NP, Abram V, Tramer F, Passamonti S. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem. 2012; 134(4):1878-1884.
nih.gov
-
Sun L, Ding X, Qi J, Yu H, He S, Zhang J, Ge H, Yu B. Antioxidant anthocyanins screening through spectrum-effect relationships and DPPH-HPLC-DAD analysis on nine cultivars of introduced rabbiteye blueberry in China. Food Chem. 2012; 132(2):759-765.
usda.gov
-
Wang Y, Chen H, Camp MJ, Ehlenfeldt MK. Genotype and growing season influence blueberry antioxidant capacity and other quality attributes. Int J Food Sci Tech. 2012; 47:1540-1549.
wiley.com
-
Wang SY, Chen H, Ehlenfeldt MK. Antioxidant capacities vary substantially among cultivars of rabbiteye blueberry (Vaccinium ashei Reade). Int J Food Sci Tech. 2011; 46:2482-2490.
wiley.com
-
Johnson, MH, Lucius A, Meyer T, Gonzalez de Mejia E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of a-amylase and a-glucosidase by highbush blueberry (Vaccinium corombosum). J Agric Food Chem. 2011; 59(16):8923-8930.
nih.gov
-
Senevirathne M, Kim S, Jeon Y. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line. Nutr Res Pract. 2010; 4(3):183-90.
nih.gov
-
Serafini M, Testa MF, Villano D, Pecorari M, van Wieren K, Azzini E, Brambilla A, Maiani G. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009; 46(6):769-74.
nih.gov
-
Piljac-Zegarac J, Belscak A, Piljac A. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J Med Food. 2009; 12(3):608-14.
nih.gov
-
Wang CY, Chen C, Wang SY. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009; 117(3):426-431.
usda.gov
-
Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem. 2008; 56(4):1415-22.
nih.gov
-
Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. Cellular antioxidant activity of common fruits. J Agric Food Chem. 2008; 56(18):8418-26.
nih.gov
-
Wang CY, Wang SY, Chen C. Increasing antioxidant activity and reducing decay of blueberries by essential oils. J Agric Food Chem. 2008; 56(10):3587-92.
nih.gov
-
Su M, Chien P. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) fluid products as affected by fermentation. Food Chem. 2007; 104(1):182-7.
usda.gov
-
Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007; 26(2):170-81.
nih.gov
-
Wu X, Gu L, Holden J, Haytowitz DB, Gebhardt SE, Beecher G, Prior RL. Development of a database for total antioxidant capacity in foods: a preliminary study. J Food Comp Analysis. 2004; 17(3-4):407-22.
usda.gov
-
Wu X, Beecher GR, Holden J, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004; 52(12):4026-37.
nih.gov
-
Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard LR, Hampsch-Woodill M, Huang D, Ou B, Jacob RA. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC-FL)) of plasma and other biological and food samples. J Agric Food Chem. 2003; 51(11):3273-9.
nih.gov
-
Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem. 2003; 51(2):502-9.
nih.gov
-
Howard LR, Clark JR, Brownmiller C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J Sci Food Agric. 2003; 83(12):1238-47.
wiley.com
-
Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 2002; 50(3):519-25.
nih.gov
-
Ehlenfeldt MK, Prior RL. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem. 2001; 49(5):2222-7.
nih.gov
-
Pedersen CB, Kyle J, Jenkinson AM, Gardner PT, McPhail DB, Duthie GG. Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur J Clin Nutr. 2000; 54(5):405-8.
nih.gov
-
Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem. 2000; 48(11):5677-84.
nih.gov
-
Cao G, Shukitt-Hale B, Bickford PC, Joseph JA, McEwen J, Prior RL. Hyperoxia-induced changes in antioxidant capacity and the effect of dietary antioxidants. J Appl Physiol. 1999; 86(6):1817-22.
nih.gov
-
Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem. 1998; 46(7):2686-93.
usda.gov
-
Sobolev AP, Ciampa A, Ingallina C, Mannina L, Capitani D, Ernesti I, Maggi E, Businaro R, Del Ben M, Engel P, Giusti AM, Donini LM, Pinto A. Blueberry-based meals for obese patients with metabolic syndrome: A multidisciplinary metabolomic pilot study. Metabolites 2019; 9:E138.
nih.gov
-
Langer S, Kennel A, Lodge JK. The influence of juicing on the appearance of blueberry metabolites 2 h after consumption: a metabolite profiling approach. Br J Nutr. 2018; 119:1233-1244.
nih.gov
-
Khanal R, Howard LR, Prior RL. Urinary excretion of phenolic acids in rats fed cranberry, blueberry, or black raspberry powder. J Agric Food Chem. 2015; 62(18):3987-3996.
nih.gov
-
Hanley MJ, Masse G, Harmatz JS, Cancalon PF, Dolinkowshki GC, Court MH, Greenblatt DJ. Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers. Br J Clin Pharmacol. 2013; 74(4):1041-1052.
nih.gov
-
Del Bo C, Riso P, Brambilla A, Gardana C, Rizzolo A, Simonetti P, Bertolo G, Klimis-Zacas D, Porrini M. Blanching improves anthocyanin absorption from highbush blueberry (Vaccinium corymbosum L.) puree in healthy human volunteers: a pilot study. J Agric Food Chem. 2012; 60(36):9298-9304.
nih.gov
-
Milbury PE, Kalt W. Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. J Agric Food Chem. 2010; 58(7):3950-3956.
nih.gov
-
Dulebohn RV, Yi W, Srivastava A, Akoh CC, Krewer G, Fischer JG. Effects of blueberry (Vaccinium ashei) on DNA damage, lipid peroxidation, and phase II enzyme activities in rats. J Agric Food Chem. 2008; 56(24):11700-6.
nih.gov
-
Kalt W, Blumberg JB, McDonald JE, Vinquist-Tymchuk MR, Fillmore SAE, Graf BA, O’Leary JM, Milbury PE. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem. 2008; 56(3):705-12.
nih.gov
-
Russell WR, Labat A, Scobbie L, Duncan SH. Availability of blueberry phenolics for microbial metabolism in the colon and the potential inflammatory implications. Mol Nutr Food Res. 2007; 51(6):726-31.
nih.gov
-
Stevenson DE, Cooney JM, Jensen DJ, Zhang J, Wibisono R. Comparison of the relative recovery of polyphenolics in two fruit extracts from a model of degradation during digestion and metabolism. Mol Nutr Food Res. 2007; 51(8):939-45.
nih.gov
-
Yi W, Akoh CC, Fischer J, Krewer G. Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers. J Agric Food Chem. 2006; 54(15):5651-8.
nih.gov
-
Li T, Wu S, Xu Z, Ou-Yang S. Rabbiteye blueberry prevents osteoporosis in ovariectomized rats. J Orthop Surg Res. 2014; 9:56.
nih.gov
-
Devareddy L, Hooshmand S, Collins JK, Lucas EA, Chai SC, Arjmandi BH. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J Nutr Biochem. 2008; 19(10):694-9.
nih.gov
-
Krikorian R, Kalt W, McDonald JE, Shidler MD, Summer SS, Stein AL. Cognitive performance in relation to urinary anthocyanins and their flavonoid-based products following blueberry supplementation in older adults at risk for dementia. J Funct Foods. 2020; 64:103667
sciencedirect.com
-
Gapski A, Gomes TM, Bredun MA, Ferreira-Lima NE, Ludka FK, Bordignon-Luiz MT, Burin VM. Digestion behavior and antidepressant-like effect promoted by acute administration of blueberry extract on mice. Food Res Int. 2019, 125:108618.
nih.gov
-
Travica N, D’Cunha NM, Naumovski N, Kent K, Mellor DD, Firth J, Georgousopoulou EN, Dean OM, Loughman A, Jacka F, Marx W. The effect of blueberry interventions on cognitive performance and mood: A systematic review of randomized controlled trials. Brain Behav Immun. 2020; 85:96-105.
nih.gov
-
Shukitt-Hale B, Thangthaeng N, Miller MG, Poulose SM, Carey AN, Fisher DR. Blueberries improve neuroinflammation and cognition differentially depending on individual cognitive baseline status. J Gerontol A Biol Sci Med Sci. 2019, 74:977-983.
nih.gov
-
Krishna G, Ying Z, Gomez-Pinilla F. Blueberry supplementation mitigates altered brain plasticity and behavior after traumatic brain injury in rats. Mol Nutr Food Res. 2019, 63:e1801055
nih.gov
-
McNamara RK, Kalt W, Shidler MD, McDonald J, Summer SS, Stein AL, Stover AN, Krikorian R. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018; 64:147-156.
nih.gov
-
Xu N, Meng H, Liu T, Feng Y, Qi Y, Zhang D, Wang H. Blueberry phenolics reduce gastrointestinal infection of patients with cerebral venous thrombosis by improving depressant-induced autoimmune disorder via miR-155-mediated brain-derived neurotrophic factor. Front Pharmacol. 2017; 8:853.
nih.gov
-
Hong SM, Soe KH, Lee TH, Kim IS, Lee YM, Lim BO. Cognitive improving effects by highbush blueberry (Vaccinium corymbosum L.) vinegar on scopolamine-induced amnesia mice model. J Agrc Food Chem. 2018; 66(1):99-107.
nih.gov
-
Carey AN, Gildawie KR, Rovnak A, Thangthaeng N, Fisher DR, Shukitt-Hale B. Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high-fat diet. Nutr Neurosci. 2019; 22(4):253-263
nih.gov
-
Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr. 2018; 57(3):1169-1180.
nih.gov
-
Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, Stein AL, Stover AN, Krikorian R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018; 21(4):297-305.
nih.gov
-
Poulose SM, Rabin BM, Bielinski DF, Kelly ME, Miller MG, Thanthaeng N, Dhukitt-Hale B. Neruochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles. Life Sci Space Res. 2017; 12:16-23.
nih.gov
-
Guo Q, Kim Y, Lee B. Protective effects of blueberry drink on cognitive impairment induced by chronic mild stress in adult rats. Nutr Res and Pract. 2017; 11(1):25-32.
nih.gov
-
Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017; 42(7):773-779.
nih.gov
-
Tan L, Yang H, Pang W, Li H, Liu W, Sun S, Song N, Zhang W, Jiang Y. Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in alzheimer’s diseases mouse model. J Alzheimers Dis. 2017; 56(2):629-640.
nih.gov
-
Ebenezer PJ, Wilson CB, Wilson LD, Nair AR, Francis J. The anti-inflammatory effects of blueberries in an animal model of post-traumatic stress disorder (PTSD). PLoS One. 2016; 11(9).
nih.gov
-
Shukitt-Hale B, Bielinski DF, Lau FC, Willis LM, Carey AN, Joseph JA. The beneficial effects of berries on cognition, motor behavior and neuronal function in ageing. Br J Nutr. 2015; 114(10):1542-1549.
nih.gov
-
Coban J, Dogan-Ekici I, Aydm AF, Betul-Kalaz E, Dogru-Abbasoglu S, Uysal M. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis. 2015; 30(3):793-802.
nih.gov
-
Whyte AR, Williams CM. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition. 2015; 31(3):531-534.
nih.gov
-
Poulose SM, Bielinski DF, Carrihill-Knoll K, Rabin BM, Shukitt-Hale B. Protective effects of blueberry- and strawberry diets on neuronal stress following exposure to 53Fe particles. Brain Res. 2014; 1593:9-18.
nih.gov
-
Shukitt-Hale B. Blueberries and neuronal aging. Gerontology. 2012; 58(6):518-523.
nih.gov
-
Carey AN, Gomes SM, Shukitt-Hale B. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet. J Ag Food Chem. 2014; 62(18):3972-3978.
nih.gov
-
Whyte AR, Williams CM. The cognitive effects of acute blueberry anthocyanin interventions on 7-9 year old children. Appetite. 2013; 59(2):637.
usda.gov
-
Rendeiro C, Vauzour D, Rattray M, Waffo-Teguo P, Merillon JM, Butler LT, Williams CM, Spencer JPE. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One. 2013; 8(5).
nih.gov
-
Carey AN, Fisher DR, Rimando AM, Gomes SM, Bielinski DF, Shukitt-Hale B. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J Agric Food Chem. 2013; 61(25):5979-5986.
nih.gov
-
Shukitt-Hale B, Lau FC, Cheng V, Luskin K, Carey AN, Carrihill-Knoll K, Rabin BM, Joseph JA. Changes in gene expression in the rat hippocampus following exposure to 56Fe particles and protection by berry diets. Cent Nerv Syst Agents Med Chem. 2013; 13(1):36-42.
nih.gov
-
Rendeiro C, Vauzour D, Kean RJ, Butler LT, Rattray M, Spencer JPE, Williams CM. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BCNF mRNA expression in young rats. Psychopharmacology. 2012; 223(3):319-330.
nih.gov
-
Devore EE, Kang JH, Breteler MMB, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012; 72(1):135-143.
nih.gov
-
Miller MG, Shukitt-Hale B. Berry fruit enhances beneficial signaling in the brain. J Ag Food Chem. 2012; 60(23):5709-5715.
nih.gov
-
Malin DH, Lee DR, Goyarzu P, Chang Y-H, Ennis LJ, Becket E, Shukitt-Hale B, Joseph JA. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats. Nutrition. 2011; 27(3):338-342.
nih.gov
-
Giacalone M, Di Sacco F, Traupe I, Topini R, Forfori F, Giunta F. Antioxidant and neuroprotective properties of blueberry polyphenols: a critical review. Nutr Neuro. 2011; 14(3):119-125.
nih.gov
-
Joseph JA, Bielinkski DF, Fisher DR. Blueberry treatment antagonizes C-2 ceramide-induced stress signaling in muscarinic receptor-transfected COS-7 cells. J Agric Food Chem. 2010; 58(6):3380-92.
nih.gov
-
Willis LM, Freeman L, Bickford PC, Quintero EM, Umphlet CD, Moore AB, Goetzl L, Granholm A. Blueberry supplementation attenuates microglial activation in hippocampla intraocular grafts to aged hosts. Glia. 2010; 58(6):679-90.
nih.gov
-
Joseph JA, Shukitt-Hale B, Brewer GJ, Weikel KA, Kalt W, Fisher DR. Differential protection among fractionated blueberry polyphenolic families against DA-, AB42-and LPS-induced decrements in Ca2+ buffering in primary hippocampal cells. J Agric Food Chem. 2010; 58(14):8196-204.
nih.gov
-
Brewer GJ, Torricelli JR, Lindsey AL, Kunz EZ, Neuman A, Fisher DR, Joseph JA. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract. J Nutr Biochem. 2010; 21(10):991-8.
nih.gov
-
Berglof E, Small BJ, Bickford PC, Stromberg I. Beneficial effects of antioxidant-enriched diet for tyrosine hydroxylase-positive neurons in ventral mesencephalic tissue in oculo grafts. J Comp Neurol. 2009; 515(1):72-82.
nih.gov
-
Joseph JA, Neuman A, Bielinski DF, Fisher DR. Blueberry antagonism of C-2 ceramide disruption of Ca2+ responses and recovery in MAChR-transfected COS-7 cell. J Alzheimer Dis. 2008; 15(3):429-441.
nih.gov
-
Coultrap SJ, Bickford PC, Browning MD. Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP. Age. 2008; 30(4):263-272.
nih.gov
-
Zhu Y, Bickford PC, Sanberg P, Giunta B, Tan J. Blueberry opposes B-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. Rejuvenation Res. 2008; 11(5):891-901.
nih.gov
-
Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, Whiteman M, Spencer JP. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med. 2008; 45(3):295-305.
nih.gov
-
Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, Joseph JA. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci. 2008; 11(4):172-82.
nih.gov
-
Shukitt-Hale B, Lau FC, Joseph JA. Berry fruit supplementation and the aging brain. J Agric Food Chem. 2008; 56(3):636-41.
nih.gov
-
Duffy KB, Spangler EL, Devan BD, Guo Z, Bowker JL, Janas AM, Hagepanos A, Minor RK, DeCabo R, Mouton PR, Shukitt-Hale B, Joseph JA, Ingram DK. A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainate-induced learning impairment in rats. Neurobiol Aging. 2008; 29(11):1680-9.
nih.gov
-
Yao Y, Vieira A. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity. Neurotoxicology. 2007; 28(1):93-100.
nih.gov
-
Joseph JA, Shukitt-Hale B, Lau FC. Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann NY Acad Sci. 2007; 1100:470-85.
nih.gov
-
Joseph JA, Carey A, Brewer GJ, Lau FC, Fisher DR. Dopamine and Abeta-induced stress signaling and decrements in Ca2+ buffering in primary neonatal hippocampal cells are antagonized by blueberry extract. J Alzheimers Dis. 2007; 11(4):433-46.
nih.gov
-
Shukitt-Hale B, Carey AN, Jenkins D, Rabin BM, Joseph JA. Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiol Aging. 2007; 28(8):1187-94.
nih.gov
-
Lau FC, Bielinski DF, Joseph JA. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res. 2007; 85(5):1010-7.
nih.gov
-
McGuire SO, Sortwell CE, Shukitt-Hale B, Joseph JA, Henja MJ, Collier TJ. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neruons. Nutr Neurosci. 2006; 9(5-6):251-258.
nih.gov
-
Joseph JA, Fisher DR, Bielinski D. Blueberry extract alters oxidative stress-mediated signaling in COS-7 cells transfected with selectively vulnerable muscarinic receptor subtypes. J Alzheimers Dis. 2006; 9(1):35-42.
nih.gov
-
Lau FC, Shukitt-Hale B, Joseph JA. Beneficial effects of berry fruit polyphenols on neuronal and behavioral aging. J Sci Food Agric. 2006; 86(14):2251-5.
usda.gov
-
Joseph JA, Fisher DR, Carey AN, Bielinski DF. Dopamine-induced stress signaling in COS-7 cells transfected with selectively vulnerable muscarinic receptor subtypes is partially mediated via the i3 loop and antagonized by blueberry extract. J Alzheimers Dis. 2006; 10(4):423-37.
nih.gov
-
Galli RL, Bielinski DF, Szprengiel A, Shukitt-Hale B, Joseph JA. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol Aging. 2006; 27(2):344-50.
nih.gov
-
Barros D, Amaral OB, Izquierdo I, Geracitano L, do Carmo Bassols Raseira M, Henriques AT, Ramirez MR. Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacol Biochem Behav. 2006; 84(2):229-34.
nih.gov
-
de Rivera C, Shukitt-Hale B, Joseph JA, Mendelson JR. The effects of antioxidants in the senescent auditory cortex. Neurobiol Aging. 2006; 27(7):1035-44.
nih.gov
-
Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D. Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res. 2005; 30(6-7):927-35.
nih.gov
-
Shukitt-Hale B, Galli RL, Meterko V, Carey A, Bielinski DF, McGhie T, Joseph JA. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress. Age. 2005; 27(1):49-57.
usda.gov
-
Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr. 2005; 81(1 Suppl):313S-6S.
nih.gov
-
Willis L, Bickford P, Zaman V, Moore A, Granholm A. Blueberry extract enhances survival of intraocular hippocampal transplants. Cell Transplant. 2005; 14(4):213-23.
nih.gov
-
Lau FC, Shukitt-Hale B, Joseph JA. The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging. 2005; 26S(1):S128-32.
nih.gov
-
Stromberg I, Gemma C, Vila J, Bickford PC. Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system. Exp Neurol. 2005; 196(2):298-307.
nih.gov
-
Wang Y, Chang CF, Chou J, Chen HL, Deng X, Harvey BK, Cadet JL, Bickford PC. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp Neurol. 2005; 193(1):75-84.
nih.gov
-
Ramirez MR, Izquierdo I, do Carmo Bassols Raseira M, Zuanazzi JA, Barros D, Henriques AT. Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmcol Res. 2005; 52(6):457-62.
nih.gov
-
Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005; 8(2):111-20.
nih.gov
-
Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R, Moy E, Moy D, Lippold S, Shukitt-Hale B, Joseph JA. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci. 2004; 7(2):75-83.
nih.gov
-
Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee H-G, Smith MA, Joseph JA. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci. 2004; 7(5-6):309-16.
nih.gov
-
Joseph JA, Denisova NA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, Morgan D. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci. 2003; 6(3):153-62.
nih.gov
-
Bickford PC, Gould T, Briederick L, Chadman K, Pollock A, Young D, Shukitt-Hale B, Joseph JA. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res. 2000; 866(1-2):211-7.
nih.gov
-
Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski DF, Martin A, McEwen J, Bickford PC. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. 1999; 19(18):8114-21.
nih.gov
-
Lamdan H, Garcia-Lazaro RS, Lorenzo N, Caligiuri LG, Alonso DF, Farina HG. Anti-proliferative effects of a blueberry extract on a panel of tumor cell lines of different origin. Exp Oncol. 2020; 42:101-108.
nih.gov
-
Davidson KT, Zhu Z, Bai Q, Xiao H, Wakefield MR, Fang Y. Blueberry as a potential radiosensitizer for treating cervical cancer. Pathol Oncol Res. 2019; 25:81-88.
nih.gov
-
Davidson KT, Zhu Z, Balabanov D, Zhao L, Wakefield MR, Bai Q, Fang Y. Beyond conventional medicine – a look at blueberry, a cancer-fighting superfruit. Pathol Oncol Res. 2018; 24:733-738.
nih.gov
-
Baba AB, Nivetha R, Chattopadhyay I, Nagini S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem Toxicol. 2017; 109(Pt 1):534-543.
nih.gov
-
Zhan W, Liao X, Yu L, Tian T, Liu X, Liu J, Cai L, Xiao X, Xie R, Yang Q. Effects of blueberries on migration, invasion, proliferation, the cell cycle and apoptosis in hepatocellular carcinoma cells. Biomed Rep. 2016; 5(5):579-584.
nih.gov
-
Sun X, Liu N, Wu Z, Feng Y, Meg X. Anti-tumor activity of a polysaccharide from blueberry. Molecules. 2015; 20(3):3841-3853.
nih.gov
-
Kanaya N, Adams L, Takasaki A, Chen S. Whole blueberry powder inhibits metastasis of triple negative breast cancer in a xenograft mouse model through modulation of inflammatory cytokines. Nutr Cancer 2014; 66(2):242-248.
nih.gov
-
Alvarez-Gonzalez I, Garcia-Melo F, Vasquez-Garzon VR, Villa-Trevino S, Madrigal-Santillan EO, Morales-Gonzalez JA, Mendoza-Perez JA, Madrigal-Bujaidar E. Evaluation of blueberry juice in mouse azoxymethane-induced aberrant crypts and oxidative damage. Evid Based Complement Alternat Med. 2014; 2014:379890.
nih.gov
-
Bunea A, Rugina D, Sconta Z, Pop RM, Pintea A, Socaciu C, Tabaran F, Grootaert C, Struijs K, VanCamp J. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry. 2013; 95:436-444.
nih.gov
-
Jeyabalan J, Aqil F, Munagal R, Annamalai L, Vadhanam MV, Gupta RC. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J Agric Food Chem. 2014; 62(18):3963-3971.
nih.gov
-
Johnson SA, Arjmandi BH. Evidence for anti-cancer properties of blueberries: a mini-review. Anticancer Agents Med Chem. 2013; 13(8):1142-1148.
nih.gov
-
Ravoori S, Vadhanam MV, Aqil F, Gupta RC. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J Ag Food Chem. 2012; 60(22):5547-5555.
nih.gov
-
Adams LS, Kanaya N, Phung S, Liu Z, Chen S. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J Nutr. 2011; 141(10):1805-1812.
nih.gov
-
Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2010; 70(9):3594-3605.
nih.gov
-
Aiyer HS, Gupta RC. Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prev Res. 2010; 3(6):727-737.
nih.gov
-
Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RCM. In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res. 2009; 29(1):802-11.
nih.gov
-
Gordillo G, Fang H, Khanna S, Harper J, Phillips G, Sen CK. Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm. Antioxid Redox Signal. 2009; 11(1):47-58.
nih.gov
-
Aiyer HS, Srinivasan C, Gupta RC. Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats. Nutr Cancer. 2008; 60(2):227-34.
nih.gov
-
McDougall GJ, Ross HA, Ikeji M, Stewart D. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. J Agric Food Chem. 2008; 56(9):3016-23.
nih.gov
-
Boateng J, Verghese M, Shackelford L, Walker LT, Khatiwada J, Ogutu S, Williams DS, Jones J, Guyton M, Asiamah D, Henderson F, Grant L, DeBruce M, Johnson A, Washington S, Chawan CB. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem Toxicol. 2007; 45(5):725-32.
nih.gov
-
Neto CC. Cranberry and blueberry: Evidence for protective effects against cancer and vascular disease. Mol Nutr Food Res. 2007; 51(6):652-64.
nih.gov
-
Wilms LC, Boots AW, deBoer VCJ, Maas LM, Pachen DMFA, Gottschalk RWH, Ketelslegers HB, Godschalk RWL, Haenen GRMM, van Schooten FJ, Kleinjans JCS. Impact of multiple genetic polymorphisms on effects of a 4-week blueberry juice intervention on ex vivo induced lymphocytic DNA damage in human volunteers. Carcinogenesis. 2007; 28(8):1800-6.
nih.gov
-
Srivastava A, Akoh CC, Fischer J, Krewer G. Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes. J Agric Food Chem. 2007; 55(8):3180-5.
nih.gov
-
Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando AM, Reddy BS. Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res. 2007; 13(1):350-5.
nih.gov
-
Huang C, Zhang D, Li J, Tong Q, Stoner GD. Differential inhibition of UV-induced activation of NFkB and AP-1 by extracts from black raspberries, strawberries, and blueberries. Nutr Cancer. 2007; 58(2):205-12.
nih.gov
-
Skupien K, Oszmianski J, Kostrzewa-Nowak D, Tarasiuk J. In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 Cells. Cancer Lett. 2006; 236(2):282-91.
nih.gov
-
Yi W, Akoh CC, Fischer J, Krewer G. Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis. Food Research Intl. 2006; 39(5):628-38.
usda.gov
-
Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem. 2006; 54(25):9329-39.
nih.gov
-
Schmidt BM, Erdman JW Jr., Lila MA. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett. 2006; 231(2):240-6.
nih.gov
-
Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem. 2005; 53(18):7320-9.
nih.gov
-
Wilms LC, Hollman PCH, Boots AW, Kleinjans JCS. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutat Res. 2005; 582(1-2):155-62.
nih.gov
-
Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer. 2005; 114(4):628-33.
nih.gov
-
Hope Smith S, Tate PL, Huang G, Magee JB, Meepagala KM, Wedge DE, Larcom LL. Antimutagenic activity of berry extracts. J Med Food. 2004; 7(4):450-5.
PubMed.gov
-
Olsson ME, Gustavsson K, Andersson S, Nilsson A, Duan R. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem. 2004; 52(24):7264-71.
nih.gov
-
Wedge DE, Meepagala KM, Magee JB, Smith SH, Huang G, Larcom LL. Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. J Med Food. 2001; 4(1):49-51.
nih.gov
-
Wood E, Hein S, Heiss C, Williams C, Rodriguez-Mateos A. Blueberries and cardiovascular disease prevention. Food Funct. 2019, 10:7621-7633.
nih.gov
-
Tang JS, Bozonet SM, McKenzie JL, Anderson RF, Melton LD, Vissers MCM. Physiological concentrations of blueberry-derived phenolic acids reduce monocyte adhesion to human endothelial cells. Mol Nutr Food Res. 2019; 63:e1900478
nih.gov
-
Curtis PJ, van der Velpen W, Berends L, Jennings A, Feelisch M, Umpleby AM, Evans M, Fernandez BO, Meiss MS, Minnion M, Ptter J, Minihane AM, Kay CD, Rimm EB, Cassidy A. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome—results from a 6-month, double-blind, randomized controlled trial. Am J Clin Nutr. 2019; 109(6):1535-1545.
nih.gov
-
Wu X, Wang TTY, Prior RL, Pehrsson PR. Prevention of atherosclerosis by berries: the case of blueberries. J Ag Food Chem. 2018; 66:9172-9188.
nih.gov
-
Cutler BR, Gholami S, Chua JS, Kuberan B, Babu PVA. Blueberry metabolites restore cell surface glycosaminoglycans and attenuate endothelial inflammation in diabetic human aortic endothelial cells. Int J Cardiol. 2018; 261:155-158.
nih.gov
-
Bharat D, Cavalcanti RRM, Petersen C, Begaye N, Cutler BR, Costa MMA, Ramos RKLG, Ferreira MR, Li Y, Bharath LP, Toolson E, Sebahar P, Looper RE, Jalili T, Rajasekaran NS, Ji A, Symons JD, Babu PVA. Blueberry metabolites attenuate lipotoxicity-induced endothelial dysfunction. Mol Nutr Food Res. 2018; 62(2).
nih.gov
-
Del Bo C, Deon V, Campolo J, Lanti C, Parolini M, Porrini M, Klimis-Zacas D, Riso P. A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: two randomized, controlled, crossover pilot studies. Food Funct. 2017; 8(11):4108-4117.
nih.gov
-
Cutler BR, Petersen C, Anandh Babu PV. Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Mol Nutr Food Res. 2016; 61(6).
nih.gov
-
Johnson SA, Feresin RG, Navaei N, Figueroa A, Elam ML, Akhavan NS, Hooshmand S, Purafshar S, Payton ME, Arjmandi BH. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre- and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017; 8(1):372-380.
nih.gov
-
Zhu Y, Sun J, Lu W, Wang X, Wang X, Han Z, Qiu C. Effects of blueberry supplementation on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2017; 31(3):165-171.
nih.gov
-
Liu Y, Tan D, Shi L, Liu X, Zhang Y, Tong C, Song D, Hou M. Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS One. 2015; 10(7).
nih.gov
-
Stull AJ, Cash KC, Champagne CM, Gupta AK, Boston R, Beyl RA, Johnson WD, Cefalu WT. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2015; 7(6):4107-4123.
nih.gov
-
Johnson SA, Figueroa A, Navael N, Wong A, Kalfon R, Ornsbee LT, Feresin RG, Elam ML, Hooshmand S, Payton ME, Arjmandi BH. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet. 2015; 115(3):369-377.
nih.gov
-
Del Bo C, Porrini M, Fracassetti D, Campolo J, Klimis-Zacas D, Riso P. A single serving of blueberry (V. corymbosum) modulates peripheral arterial dysfunction induced by acute cigarette smoking in young volunteers: a randomized-controlled trial. Food Funct. 2014; 5(12):3107-3116.
nih.gov
- McAnulty LS, Collier SR, Landram MJ, Whittaker DS, Isaacs SE, Klemka JM, Cheek SL, Arms JC, McAnulty SR. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr Res. 2014; 34(7):577-585.
-
Rodriguez-Mateos A, Ishisaka A, Mawatari K, Vidal-Diez A, Spencer JPE. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats. Br J Nutr. 2013; 109(10):1746-1754.
nih.gov
-
Liang Y, Chen J, Zuo Y, Ma KY, Jiang Y, Huang Y, Chen Z. Blueberry anthocyanins at doses of 0.5 and 1% lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. Eur J Nutr. 2013; 52(3):869-875.
nih.gov
-
Del Bo C, Riso P, Campolo J, Moller P, Loft S, Klimis-Zacas D, Brambilla A, Rizzolo A, Porrini M. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res. 2013; 33(3):220-227.
nih.gov
-
Horrigan LA, Holohan CA, Lawless GA, Murtagh MA, Williams CT, Webster CM. Blueberry juice causes potent relaxation of rat aortic rings via the activation of potassium channels and the H2S pathway. Food Funct. 2013; 4(3):392-400.
nih.gov
-
Yuji K, Sakaida H, Kai T, Fukuda N, Yukizaki C, Sakai M, Tsubouchi H, Kataoka H. Effect of dietary blueberry (Vaccinium ashei Reade) leaves on serum and hepatic lipid levels in rats. J Oleo Sci. 2013; 62(2):89-96.
nih.gov
-
Coban J, Evran B, Ozkan F, Cefik A, Dogru-Abbasoglu S, Uysal M. Effect of blueberry feeding on lipids and oxidative stress in the serum, liver and aorta of guinea pigs fed on a high-cholesterol diet. Biosci Biotechnol Biochem. 2013; 77(2):389-391.
nih.gov
-
Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation. 2013; 127(2):188-196.
nih.gov
-
Elks CM, Reed SD, Mariappan N, Shukitt-Hale B, Joseph JA, Ingram DK, Francis J. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress. PLoS ONE. 2011; 6(9):e24028.
PubMed.gov
-
Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010; 140(9):1582-1587.
PubMed.gov
-
Kim H, Bartley GE, Rimando AM, Yokoyama W. Hepatic gene expression related to lower plasma cholesterol in hamsters fed high-fat diets supplemented with blueberry peels and peel extract. J Agric Food Chem. 2010; 58(7):3984-3991.
nih.gov
-
Ahmet I, Spangler E, Shukitt-Hale B, Joseph JA, Ingram DK, Talan M. Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PloS ONE. 2009; 4(11):e7975.
PubMed.gov
-
Nagao K, Higa K, Shirouchi B, Nomura S, Inoue N, Inafuku M, Yanagita T. Effect of Vaccinium ashei reade leaves on lipid metabolism in Otsuka Long-Evans Tokushima fatty rats. Biosci Biotechnol Biochem. 2008; 72(6):1619-22.
nih.gov
-
Kalt W, Foote K, Fillmore SAE, Lyon M, Van Lunen TA, McRae KB. Effect of blueberry feeding on plasma lipids in pigs. Br J Nutr 2008; 100(1):70-8.
nih.gov
-
Sakaida H, Nagao K, Higa K, Shirouchi B, Inoue N, Hidaka F, Kai,T., Yanagita T. Effect of Vaccinium ashei reade leaves on angiotensin converting enzyme activity in vitro and on systolic blood pressure of spontaneously hypertensive rats in vivo. Biosci Biotechnol Biochem. 2007; 71(9):2335-7.
PubMed.gov
-
Kahlon TS, Smith GE. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.) strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chem. 2007; 100(3):1182-7.
usda.gov
-
McAnulty SR, McAnulty LS, Morrow JD, Khardouni D, Shooter L, Monk J, Gross S, Brown V. Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic Res. 2005; 39(11):1241.
PubMed.gov
-
Sun Y, Li M, Mitra S, Muhammad RH, Debnath B, Lu X, Jian H, Qiu D. Comparative phytochemical profiles and antioxidant enzyme activity analyses of the southern highbush blueberry (Vaccinium corymbosum) at different developmental stages. Molecules. 2018; 23:2209.
nih.gov
-
Van Breda SGJ, Briede JJ, de Kok TMCM. Improved preventive effects of combined bioactive compounds present in different blueberry varieties as compared to single phytochemicals. Nutrients. 2018; 11:E61.
nih.gov
-
Lin Z, Fischer J, Wicker L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chem. 2016; 194:986-993.
nih.gov
-
Scalzo J, Stevenson D, Hedderley D. Polyphenol compounds and other quality traits in blueberry cultivars. J Berry Research. 2015; 5(3):117-130.
Journal of Berry Research
-
Yousef GG, Brown AF, Funakoshi Y, Mbeunkui F, Grace MH, Ballington JR, Loraine A, Lila MA. Efficient quantification of the health-relevant anthocyanin and phenolic aid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.). J Agric Food Chem. 2013; 61(20):4806-4815.
nih.gov
-
Bett-Garber KL, Lea JM, Watson MA, Grimm CC, Lloyd SW, Beaulieu JC, Stein-Chisholm RE, Andrzejewski BP, Marshall DA. Flavor of fresh blueberry juice and the comparison to amount of sugars, acids, anthocyanidins, and physicochemical measurements. J Food Sci. 2015; 80:S818-S827.
nih.gov
-
Harb J, Saleh O, Kittemann D, Neuwald DA, Hoffmann T, Reski R, Schwab W. Changes in polyphenols and expression levels of related genes in ‘Duke’ blueberries stored under high CO2 levels. 2014; 62(30):7460-7467.
nih.gov
-
Pallas LA, Pegg RB, Kerr WL. Quality factors, antioxidant activity, and sensory properties of jet-tube dried rabbiteye blueberries. J Sci Food Agric. 2013; 93(8):1887-1897.
nih.gov
-
Li C, Feng J, Huang W, An X. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Manjing. J Agric Food Chem. 2013; 61(3):523-531.
nih.gov
-
Wan C, Yuan T, Cirello AL, Seeram NP. Antioxidant and alpha-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem. 2012; 135(3):1929-1937.
nih.gov
-
Rodriguez-Mateos A, Cifuentes-Gomez T, Tabatabaee S, Lecras C, Spencer JPE. Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. J Ag Food Chem. 2012; 60(23):5709-5715.
nih.gov
-
Muller D, Schantz M, Richling E. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. J Food Sci. 2012; 77(4):C340-345.
nih.gov
-
Eichholz I, Huyskens-Keil S, Keller A, Ulrich D, Kroh LW, Rohn S. UV_B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem. 2011; 126(1):60-64.
usda.gov
-
Gavrilova V, Kajdazanoska M, Gjamovski V, Stefova M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC-DAD-ESI-MS. J Agric Food Chem. 2011; 59(8):4009-4018.
nih.gov
-
You Q, Wang B, Chen F, Huang Z, Wang X, Luo PG. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011; 125(1):201-208.
usda.gov
-
Phillips MM, Case RJ, Rimmer CA, Sander LC, Sharpless KE, Wise SA, Yen JH. Determination of organic acids in Vaccinium berry standard reference materials. Anal Bioanal Chem. 2010; 398(1):425-434.
nih.gov
-
Borges G, Degeneve A, Mullen W, Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem. 2010; 58(7):3901-3909.
nih.gov
-
Burdulis D, Sarkinas A, Jasutiene I, Stackeviciene E, Nikolajevas L, Janulis V. Comparative study of anthocyanin composition, antimicrobial, and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol Pharm. 2009; 66(4):399-408.
nih.gov
-
Lohachoompol V, Mulholland M, Srzednicki G, Craske J. Determination of anthocyanins in various cultivars of highbush and rabbiteye blueberries. Food Chem. 2008; 111(1):249-54.
usda.gov
-
Saftner R, Polashock J, Ehlenfeldt M, Vinyard B. Instrumental and sensory quality characteristics of blueberry fruit from twelve cultivars. Postharvest biology and technology. 2008; 49(1):19-26.
usda.gov
-
Castrejon ADR, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008; 109(3):564-72.
usda.gov
-
Wang SY, Chen CT, Sciarappa W, Wang CY, Camp MJ. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J Agric Food Chem. 2008; 56(14):5788-94.
nih.gov
-
Kalt W, MacKinnon S, McDonald J, Vinqvist M, Craft C, Howell A. Phenolics of Vaccinium berries and other fruit crops. J Sci Food Agric. 2008; 88(1):68-76.
usda.gov
-
Riihinen K, Jaakola L, Karenlampi S, Hohtola A. Organ-specific distribtuion of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 2008; 110(1):156-60.
usda.gov
-
Kalt W, Howell AB, MacKinnon SL, Goldman IL. Selected bioactivities of Vaccinium berries and other fruit crops in relation to their phenolic contents. J Sci Food Agric. 2007; 87(12):2279-85.
usda.gov
-
Alkharouf NW, Dhanaraj AL, Naik D, Overall C, Matthews BF, Rowland LJ. BBGD: an online database for blueberry genomic data. BMC Plant Biol. 2007; 7(5).
nih.gov
-
Koponen JM, Happonen AM, Mattila PH, Torronen AR. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 2007; 55(4):1612-9.
nih.gov
-
Vicente AR, Ortugno C, Rosli H, Powell ALT, Greve LC, Labavitch JM. Temporal sequence of cell wall disassembly events in developing fruits. 2. Analysis of blueberry (Vaccinium species). J Agric Food Chem. 2007; 55(10):4125-30.
nih.gov
-
Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem. 2006; 54(11):4069-75.
nih.gov
-
Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem. 2006; 54(26):9966-77.
nih.gov
-
Wu X, Prior, RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005; 53(7):2589-99.
nih.gov
-
Cho MJ, Howard LR, Prior RL, Clark JR. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric. 2005; 85(13):2149-58.
usda.gov
-
Silva JL, Marroquin E, Matta FB, Garner JO Jr., Stojanovic J. Physicochemical, carbohydrate and sensory characteristics of highbush and rabbiteye blueberry cultivars. J Sci Food Agric. 2005; 85(11):1815-21.
usda.gov
-
Parry J, Su L, Luther M, Zhou K, Yurawecz MP, Whittaker P, Yu L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem. 2005; 53(3):566-73.
nih.gov
-
Taruscio TG, Barney DL, Exon J. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J Agric Food Chem. 2004; 52(10):3169-76.
nih.gov
-
Nakajima J, Tanaka I, Seo S, Yamazaki M, Saito K. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotechnol. 2004; 2004(5):241-247.
nih.gov
-
Wu X, Gu L, Holden J, Haytowitz DB, Gebhardt SE, Beecher G, Prior RL. Development of a database for total antioxidant capacity in foods: a preliminary study. J Food Comp Analysis. 2004; 17(3-4):407-22.
usda.gov
-
Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem. 2004; 52(15):4713-9.
nih.gov
-
Howard LR, Clark JR, Brownmiller C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J Sci Food Agric. 2003; 83(12):1238-47.
wiley.com
-
Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem. 2003; 51(20):5867-70.
nih.gov
-
Sanchez-Moreno C, Cao G, Ou B, Prior RL. Anthocyanin and proanthocyanidin content in selected white and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from highbush blueberry. J Agric Food Chem. 2003; 51(17):4889-96.
nih.gov
-
Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002; 50(8):2432-8.
nih.gov
-
Kalt W, Ryan DAJ, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet SP. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J Agric Food Chem. 2001; 49(10):4761-7.
nih.gov
-
Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium Spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem. 2001; 49(3):1270-6.
nih.gov
-
Wang J, Kalt W, Sporns P. Comparison between HPLC and MALDI-TOF MS analysis of anthocyanins in highbush blueberries. J Agric Food Chem. 2000; 48(8):3330-5.
nih.gov
-
Mazur WM, Uehara M, Wahala K, Adlercreutz H. Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr. 2000; 83(4):381-7.
nih.gov
-
Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999; 47(6):2274-9.
nih.gov
-
Kader F, Haluk JP, Nicolas JP, Metche M. Degradation of cyanidin 3-glucoside by blueberry polyphenol oxidase: kinetic studies and mechanisms. J Agric Food Chem. 1998; 46(8):3060-5.
usda.gov
-
Stote KS, Wilson MM, Hallenbeck D, Thomas K, Rourke JM, Sweeney MI, Gottschall-Pass KT, Gosmanov AR. Effect of Blueberry Consumption on Cardiometabolic Health Parameters in Men with Type 2 Diabetes: An 8-Week, Double-Blind, Randomized, Placebo-Controlled Trial. Curr Dev Nutr. 2020, 9;4(4)nzaa030.
nih.gov
-
Rocha DMUP, Caldas APS, da Silva BP, Hermsdorff HHM, Alfenas RDG. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Crit Rev Food Sci Nutr. 2019, 59:1816-1828.
nih.gov
-
Liu W, Mao Y, Schoenborn J, Wang Z, Tang G, Tang X. Whole blueberry protects pancreatic beta-cells in diet-induced obese mouse. Nutr & Metab. 2019.
nih.gov
-
Huang W, Yao L, He X, Wang L, Li M, Yang Y,Wan C. Hypoglycemic activity and constituents analysis of blueberry (Vaccinium corymbosum) fruit extracts. Diabetes Metab Syndr Obes. 2018; 11:357-366.
nih.gov
-
Crespo MC, Visioli F. A brief review of blue- and bilberries’ potential to curb acrdio-metabolic perturbations: Focus on diabetes. Curr Pharm Design. 2017; 23(7):983-988.
nih.gov
-
Stull AJ. Blueberries’ impact on insulin resistance and glucose intolerance. Antioxidants. 2016; 5(4).
nih.gov
-
Khanal RC, Howard LR, Wilkes SE, Rogers TJ, Prior RL. Effect of dietary blueberry pomace on selected metabolic factors associated with high fructose feeding in growing Sprague-Dawley rats. J Med Foods. 2012; 15(9):802-810.
nih.gov
-
Seymour EM, Tanone II, Urcuyo-Llanes DE, Lewis SK, Kirakosyan A, Kondoleon MG, Kaufman PB, Bolling SF. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J Med Food. 2011; 14(12):1511-1518.
nih.gov
-
Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Nutr. 2010; 95(4):925-933.
nih.gov
-
Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010; 140(10):1764-1768.
PubMed.gov
-
Draelos AD, Yatskayer M, Raab S, Oresajo C. An evaluation of the effect of a topical product containing C-xyloside and blueberry extract on the appearance of type II diabetic skin. J Cosmet Dermatol. 2009; 8(2):147-51.
PubMed.gov
-
DeFuria J, Bennett G, Strissel KJ, Perfield JW II, Milbury PE, Greenbery AS, Obin MS. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr. 2009; 139(8):1510-6.
nih.gov
-
Blum JE, Gheller BJ, Hwang S, Bender E, Gheller M, Thalacker-Mercer AE. Consumption of a blueberry-enriched diet by women for 6 weeks alters determinants of human muscle progenitor cell function. J. Nutr. 2020, 150:2412-2418.
nih.gov
-
Nieman DC, Gillitt ND, Chen G, Zhang Q,Sha W, Kay CD, Chandra P, Kay KL, Lila MA. Blueberry and/or banana consumption mitigate arachidonic, cytochrome P450 oxylipin generation during recovery from 75-km cycling: A randomized trial. Front. Nutr. 2020, 7:121
nih.gov
-
Brandenburg JP, Giles LV. Four days of blueberry powder supplementation lowers the blood lactate response to running but has no effect on time-trial performance. Int J Sport Nutr Exerc Metab. 2019, 29:636-642.
nih.gov
-
Nyberg S, Gerring E, Gjellan S, Vergara M, Lindstrom T, Nystrom FH. Effects of exercise with or without blueberries in the diet on cardio-metabolic risk factors: An exploratory pilot study in healthy subjects. Ups J Med Sci. 2013; 118(4):247-255.
nih.gov
-
McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012; 9(1):19.
nih.gov
-
McAnulty LS, Nieman DC, Dumke CL, Shooter LA, Henson DA, Utter AC, Milne G, McAnulty SR. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5h of running. Appl Physiol Nutr Metab. 2011; 36(6):976-984.
nih.gov
-
Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DJ. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol Nutr Food Res. 2010; 54(3):353-363.
PubMed.gov
-
McAnulty SR, McAnulty LS, Nieman DC, Dumke CL, Morrow JD, Utter AC, Henson DA, Proulx WR, George GL. Consumption of blueberry polyphenols reduces exercise-induced oxidative stress compared to vitamin C. Nutr Res. 2004; 24(3):209-21.
USDA Agricultural Library
-
Huang W, Yan Z, Li D, Ma Y, Zhou J, Sui Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxid Med Cell Longev. 2018; 2018:1862462.
nih.gov
-
Huang W, Wu H, Li D, Song J, Xiao Y, Liu C, Zhou J, Sui Z. Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells. J Ag Food Chem. 2018; 66(7):1638-1648.
nih.gov
-
Liu Y, Zhang D, Hu J, Liu G, Chen J, Sun L, Jiang Z, Zhang X, Chen Q, Ji B. Visible light-induced lipid peroxidation of unsaturated fatty acids in the retina and the inhibitory effects of blueberry polyphenols. J Ag Food Chem. 2015; 63(42):9295-9305.
nih.gov
-
Tremblay F, Waterhouse J, Nason J, Kalt W. Prophylactic neuroprotection by blueberry-enriched diet in a rat model of light-induced retinopathy. J Nutr Biochem. 2013; 24(4):647-655.
nih.gov
-
Liu Y, Song X, Zhang D, Zhou F, Wang D, Wei Y, Gao F, Xie L, Jia G, Wu W, Ji B. Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment epithelial cells. Br J Nutr. 2012; 108(1):16-27.
nih.gov
-
Kalt W, Hanneken A, Milbury P, Tremblay F. Recent research on polyphenolics in vision and eye health. J Ag Food Chem. 2010; 58(7):4001-4007.
nih.gov
-
Huang R, Chen H. Comparison of water-assisted decontamination systems of pulsed light and ultraviolet for Salmonella inactivation on blueberry, tomato, and lettuce. J Food Sci. 2019, 84:1145-11150.
nih.gov
-
Cao X, Huang R, Chen H. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes. Int J Food Microbiol. 2017; 260:17-26.
nih.gov
-
Liu CH, Li X, Chen H. Application of water-assested ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int J Food Microbiol. 2015; 214:18-23.
nih.gov
-
Liu C, Huang Y, Chen H. Inactivation of Escherichia Coli 0157:H7 and Salmonella Enterica on blueberries in water using ultraviolet light. J Food Sci. 2015; 80(7).
nih.gov
-
Huang Y, Sido R, Huang R, Chen H. Application of water-assested pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. Int J Food Microbiol. 2015; 208:43-50.
nih.gov
-
Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, Chen H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015; 46:479-484.
nih.gov
-
Biswas D, Wideman N, O’Bryan CA, Muthaiyan A, Lingbeck JM, Crandall PG, Ricke RC. Pasteurized blueberry (Vaccinium corymbosum) juice inhibits growth of bacterial pathogens in milk but allows survival of probiotic bacteria. J Food Safety. 2012; 21(2):204-209.
usda.gov
-
Sun X, Narciso J, Wang Z, Ference C, Bai J, Zhou K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J Food Sci. 2014; 79(5):M955-M960.
nih.gov
- Concha-Meyer A, Eifert J, Williams R, Marcy J, Welbaum G. Survival of Listeria monocytogenes on fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. J Food Prot. 2014; 77(5):832-836.
-
Sun X, Bai J, Ference C, Wang Z, Zhang Y, Narciso J, Zhou K. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J Food Prot. 2014; 77(7):1127-1132.
nih.gov
-
Huang Y, Chen H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 2014; 40:1-8.
nih.gov
-
Kim C, Hung Y. Inactivation of E. coli 0157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J Food Sci. 2012; 77(4):M206-211.
nih.gov
-
Horm KM, Davidson M, Harte FM, D’Souza DH. Survival and inactivation of human norovirus surrogates in blueberry juice by high-pressure homogenization. Foodborne Pathog Dis. 2012; 9(11):974-979.
nih.gov
-
Kim TJ, Corbitt MP, Silva JL, Wang DS, Jung Y, Spencer B. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface. J Food Sci. 2011; 76(6):M353-M360.
nih.gov
-
Moreno MA, Castell-Perez ME, Gomes C, Da Silva PF, Moreira RG. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L.) at medium dose levels (1.0-3.2 kGy). Food Sci & Tech. 2007; 40(7):1123-1132.
usda.gov
-
Popa I, Hanson EJ, Todd ECD, Schilder AC, Ryser ET. Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. J Food Prot. 2007; 70(9):2084-8.
usda.gov
-
Wu VCH, Kim B. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiology. 2007; 24(7-8):794-800.
usda.gov
-
Sy KV, McWatters KH, Beuchat LR. Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella, yeasts, and molds on blueberries, strawberries, and raspberries. J Food Prot. 2005; 68(6):1165-1175.
usda.gov
-
Bialka KL, Demirci A. Decontamination of Escherichia coli 0157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J Food Sci. 2007; 72(9):M391-6.
USDA Agricultural Library
-
Silva S, Costa EM, Veiga M, Morais RM, Calhau C, Pintado M. Health promoting properties of blueberries: a review. Crit Rev Food Sci Nutr. 2020, 60:181-200.
nih.gov
-
Miller K, Feucht W, Schmid M. Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients. 2019, 11:E1510
nih.gov
-
Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, Tremblay F, Zamora-Ros R. Recent research on the health benefits of blueberries and their anthocyanins. Adv Nutr. 2020, 11:224-236.
nih.gov
-
Bas-Bellver C, Andres C, Segui L, Barrera C, Jimenez-Hernandez N, Artacho A, Betoret N, Gosalbes MJ. Valorization of persimmon and blueberry byproducts to obtain functional powders: In vitro digestion and fermentation by gut microbiota. J Agric Food Chem. 2020; 68:8080-8090.
nih.gov
-
Gato E, Rosalowska A, Martinez-Guitian M, Lores M, Bou G, Perez A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed & Pharmacother. 2020;132:110885.
nih.gov
-
Ntemiri A,Ghosh TS,Gheller ME, Tran TT, Blum JE, Pellanda P, Vickova K, Neto MC, Howell A, Thalacker-Mercer A, O’Toole PW. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients. 12:E2800.
nih.gov
-
Morissette A, Kropp C, Songpadith J, Moreira RJ, Costa J, Marine-Casado R, Pilon G, Varin TV, Dudonne S, Boutekrabt L, St-Pierre P, Levy E, Roy D, Desjardins Y, Raymond F, Houde VP, Marette A. Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2020, 318:E965-E980.
nih.gov
-
Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, Zhang Q, Feng Y, Megn X, Li B. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr Biochem. 2019; 64:88-100.
nih.gov
-
Polewski MA, Esquivel-Alvarado D, Wedde Ns, Kruger CG, Reed JD. Isolation and characterization of blueberry polyphenolic components and their effects on gut barrier dysfunction. J Agric Food Chem. 2019.
nih.gov
-
Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J Nutr. 2018; 148(2):209-219.
nih.gov
-
Pervin M, Hasnat MA, Lim J, Lee Y, Kim EO, Um B, Lim BO. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. J Nutr Biochem. 2016; 28:103-113.
nih.gov
-
Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC, McNabb WC, Ansell J. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr 1a-/- mice, a model of inflammatory bowel diseases. Nutrition. 2012; 28(3):324-330.
nih.gov
-
Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis. Dig Dis Sci. 2008; 53(9):2464-73.
nih.gov
-
Driscoll K, Deshpande A, Datta R, Ramakrishna W. Anti-inflammatory effects of northern highbush blueberry extract on an in vitro inflammatory bowel disease model. Nutr Cancer. 2020, 72:1178-1190.
nih.gov
-
Rutledge GA, Risher DR, Miller MG, Kelly ME, Bielinski DF, Shukitt-Hale B. The effects of blueberry and strawberry serum metabolites on age-related oxidative and inflammatory signaling in vitro. Food Funct. 2019; 10:7707-7713.
nih.gov
-
South S, Lucero J, Vijayagopal P, Juma S. Anti-inflammatory action of blueberry polyphenols in HIG-82 rabbit synoviocytes. J Med Food. 2019; 22:1032-1040.
nih.gov
-
Du C, Smith A, Avalos M, South S, Crabtree K, Wang W, Kwon Y, Vijayagopal P, Juma S. Blueberries improve pain, gait performance, and inflammation in individuals with symptomatic knee osteoarthritis. Nutrients. 2019; 11:E290.
nih.gov
-
Ebenezer PJ, Wilson CB, Wilson LD, Nair AR, J F. The anti-inflammatory effects of blueberries in an animal model of post-traumatic stress disorder (ptsd). PLoS One. 2016; 11(9).
nih.gov
-
Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, Lee JY, Rutledge JC, Hwang DH. Postprandial inflammatory responses and free fatty acids in plasma of adults who consumed a moderately high-fat breakfast with and without blueberry powder in a randomized placebo-controlled trial. J Nutr. 2016; 146(7):1411-1419.
nih.gov
-
Figueira ME, Oliveira M, Direito R, Rocha J, Alves P, Serra AT, Duarte C, Bronze R, Fernandes A, Brites D, Freitas M, Fernandes E, Sepodes B. Protective effects of a blueberry extract in acute inflammation and collagen-induced arthritis in the rat. Biomed Pharmacother. 2016; 83:1191-1202.
nih.gov
-
Zhong Y, Wang Y, Guo J, Chu H, Gao Y, Pang L. Blueberry improves the therapeutic effect of etanercept on patients with juvenile idiopathic arthritis: Phase III study. Tohoku J Exp Med. 2015; 237(3):183-191.
nih.gov
-
Nair AR, Elks CM, Vila J, Del Piero F, Paulsen DB, Francis J. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: Potential mechanism of TLR4-MAPK signaling pathway. PLoSOne. 2013; 9.
nih.gov
-
Nair AR, Masson GS, Ebenezer PJ, Del Piero F, Francis J. Role of TLR4 in lipopolysaccharide-induced acute kidney injury: Protection by blueberry. Free Radic Biol Med. 2014; 71:16-25.
nih.gov
-
Ren T, Zhu J, Zhu L, Cheng M. The combination of blueberry juice and probiotics ameliorate non-alcoholic steatohepatitis (NASH) by affecting SREBP-1c/PNPLA-3 pathway via PPAR. Nutrients. 2017; 9(3).
nih.gov
-
Zhu J, Ren T, Zhou M, Cheng M. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway. Drug Des Devel Ther. 2016; 10:1649-1661.
nih.gov
-
Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev. 2014; 2014:469059, 1-12.
nih.gov
- Gong P, Chen F, Wang L, Wang J, Jin S, Ma Y. Protective effects of blueberries (Vaccinium corymbosum L.) extract against cadmium-induced hepatotoxicity in mice. Environ Toxicol Pharmacol. 2014; 37(3):1015-1027.
-
Bingul I, Basaran-Kucukgergin C, Tekkesin MS, Olgac V, Dogru-Abbasoglu S, Uysal M. Effect of blueberry pretreatment on diethylnitrosamine-induced oxidative stress and liver injury in rats. Environ Toxicol Pharmacol. 2013; 36(2):529-538.
nih.gov
-
Wang Y, Cheng M, Zhang B, Nie F, Jiang H. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats. PLoS One. 2013; 8(3).
nih.gov
-
Wang Y, Cheng M, Zhang B, Mu M, Zhou M, Wu J, Li C. Effect of blueberry on hepatic and immunological functions in mice. Hepatobiliary Pancreat Dis Int. 2010; 9(2):164-168.
PubMed.gov
-
Wang Y, Cheng M, Zhang B, Mu M, Wu J. Effects of blueberry on hepatic fibrosis and transcription factor Nrf2 in rats. World J Gastroent. 2010; 16(21):2657-2663.
PubMed.gov
-
Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M, Uto H, Tsubouchi H, Kataoka H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem. 2009; 284(32):21165-21176.
PubMed.gov
-
Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Endotoxin- and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis. 2007; 39(9):849-56.
nih.gov
-
Wu T, Gao Y, Guo X, Zhang M, Gong L. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxid Med Cell Longev. 2018:4051232.
nih.gov
-
Lewis ED, Ren Z, DeFuria J, Obin MS, Meydani SN, Wu D. Dietary supplementation with blueberry partially restores T-cell-mediated function in high-fat-diet-induced obese mice. Br J Nutr. 2018; 119(12):1393-1399.
nih.gov
-
Aranaz P, Romo-Hualde A, Zabala M, Navarro-Herrera D, Ruis de Galarreta M, Gil AG, Martinez JA, Milagro FI, Gonzalez-Navarro CJ. Freeze-dried strawberry and blueberry attenuates diet-induced obesity and insulin resistance in rats by inhibiting adipogenesis and lipogenesis. Food Funct. 2017; 8(11):3999-4013.
nih.gov
-
Johnson MH, Wallig M, Luna Vital DAL, de Mejia EG. Alcohol-free fermented blueberry-blackberry beverage phenolic extract attenuates diet-induced obesity and blood glucose in C57BL/6J mice. J Nutr Biochem. 2016; 31:45-59.
nih.gov
-
Bertoia ML, Mukamal KJ, Cahill LE, Hou T, Ludwig DS, Mozaffarian D, Willett WC, Hu FB, Rimm EB. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: Analysis from three prospective cohort studies. PLoS Med. 2015; 12(9).
nih.gov
-
Elks CM, Terrebonne JD, Ingram DK, Stephens JM. Blueberries improve glucose tolerance without altering body composition in obese postmenopausal mice. Obesity. 2015; 23(3):573-580.
nih.gov
-
Moghe SS, Juma S, Imrhan V, Vijayagopal P. Effect of blueberry polyphenols on 3T3-F442A preadipocyte differentiation. J Med Food. 2012; 15(5):448-452.
nih.gov
-
Prior RL, Wilkes SE, Rogers TR, Khanal RC, Wu X, Howard LR. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem. 2010; 58(7):3970-3976.
nih.gov
-
Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J Agric Food Chem. 2008; 56(3):647-53.
PubMed.gov
-
Molan AL, Lila MA, Mawson J. Satiety in rats following blueberry extract consumption induced by appetite-suppressing mechanisms unrelated to in vitro or in vivo antioxidant capacity. Food Chem. 2008; 107(3):1039-44.
usda.gov
-
Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem. 2008; 56(3):624-6.
nih.gov
-
Celejewska K, Mieszczakowska-Frac M, Konopacka D, Krupa T. The influence of ultrasound and cultivar selection on the biocompounds and physicochemical characteristics of dried blueberry (Vaccinium corymbosum L.) snacks. J Food Sci. 2018; 83:2305-2316.
nih.gov
-
Abugoch L, Tapia C, Plasencia D, Pastor A, Castro-Mandujano O, Lopez L, Escalona VH. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J Sci Food Agric. 2016; 96(2):619-626.
nih.gov
-
Concha-Meyer A, Eifert JD, Williams RC, Marcy JE, Welbaum GE. Shelf life determination of fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. Int J Food Sci. 2015; 2015:164143.
nih.gov
-
Michalska A, Lysiak G. Bioactive compounds of blueberries: Post-harvest factors influencing the nutritional value of products. Int J Mol Sci. 2015; 16(8):18642-18663.
nih.gov
-
Scibisz I, Ziarno M, Mitek M, Zareba D. Effect of probiotic cultures on the stability of anthocyanins in blueberry yoghurts. LWT – Food Science and Technology. 2012; 49:208-212.
usda.gov
- Bouzari A, Holstege D, Barrett DM. Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. J Ag Food Chem. 2015; 63(3):957-962.
-
Bouzari A, Holstege D, Barrett DM. Mineral, fiber, and total phenolic retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. J Ag Food Chem. 2015; 63(3):951-956.
nih.gov
-
Nguyen CTT, Kim J, Yoo KS, Lim S, Lee EJ. Effect of prestorage UV-A, -B, and –C radiation on fruit quality and anthocyanin of ‘Duke’ blueberries during cold storage. J Ag Food Chem. 2014; 62(50):12144-51.
nih.gov
-
Dawidowicz AL, Typek R. Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing. J Agric Food Chem. 2014; 62(45):10889-10895.
nih.gov
-
Huang S, Li J, Shang H, Meng X. Effect of methyl jasmonate on the anthocyanin content and antioxidant activity of blueberries during cold storage. J Sci Food Agric. 2014; 95(2):337-343.
nih.gov
-
Rivera SA, Zoffoli JP, Latorre BA. Determination of optimal sulfur dioxide time and concentration product for postharvest control of gray mold of blueberry fruit. Postharvest Biol Technol. 2013; 83:40-46.
usda.gov
-
Paniagua AC, East AR, Hindmarsh JP, Heyes JA. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol Technol. 2013; 79:13-19.
usda.gov
-
Giongo L, Poncetta P, Loretti P, Costa F. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharv Biol Technol. 2013; 76:34-39.
usda.gov
-
Barba FJ, Jager H, Meneses N, Esteve MJ, Frigola A, Knorr D. Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerging Tech. 2012; 14:18-24.
sciencedirect.com
-
Howard LR, Prior RL, Liyanage R, Lay JO. Processing and storage effect on berry polyphenols: Challenges and implications for bioactive properties. J Ag Food Chem. 2012; 60(27):6678-6693.
nih.gov
-
Syamaladevi RM, Andrews PK, Davies NM, Walters T, Sabiani SS. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries. J Sci Food Agric. 2012; 92(4):916-924.
nih.gov
-
Chiabrando V, Giacalone G. Shelf-life extension of highbush blueberry using 1-methylcyclopropene stored under air and controlled atmosphere. Food Chem. 2011; 126(4):1812-1816.
USDA.gov
-
Duan J, Wu R, Strik BC, Zhao Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol Tech. 2011; 59:71-79.
usda.gov
-
Buckow R, Kastell A, Terefe NS, Cersteeg C. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. J Agric Food Chem. 2010; 58(18):0076-10084.
PubMed.gov
-
Sablani SS, Andrews PK, Davies NM, Walters T, Saez H, Syamaladevi RM, Mohekar PR. Effect of thermal treatments on phytochemicals in conventionally and organically grown berries. J Sci Food Agric. 2010; 90(5):769-778.
nih.gov
-
Kechinski CP, Guimaraes PVR, Norena CPZ, Tessaro IC, Marczak LDF. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J Food Sci. 2010; 75(2):C173-C176.
usda.gov
-
Chakraborty M, Savarese M, Harbertson E, Harbertson J, Ringer KL. Effect of the novel radiant zone drying method on anthocyanins and phenolics of three blueberry liquids. J Ag Food Chem. 2010; 58(1):324-330.
nih.gov
-
Oliveira C, Amaro LF, Pinho O, Ferreira IM. Cooked blueberries: Anthocyanin and anthocyanidin degradation and their radical-scavenging activity. J Agric Food Chem. 2010; 58(16):9006-9012.
nih.gov
-
Almenar E, Samsudin H, Auras R, Harte J. Consumer acceptance of fresh blueberries in bio-based packages. J Sci Food Agric. 2010; 90(7):1121-1128.
nih.gov
-
Howard LR, Castrodale C, Brownmiller C, Mauromoustakos A. Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J Agric Food Chem. 2010; 58(7):4022-4029.
nih.gov
-
Chiabrando V, Giacalone G, Rolle L. Mechanical behaviour and quality traits of highbush blueberry during postharvest storage. J Sci Food Agric. 2009; 89(6):989-992.
usda.gov
-
Duarte C, Guerra M, Daniel P, Lopez Camelo A, Yommi A. Quality changes of highbush blueberries fruit stored in CA with different CO2 levels. J Food Sci. 2009; 74(4):S154-S159.
usda.gov
-
Brownmiller C, Howard LR, Prior RL. Processing and storage effects on procyanidin composition and concentration of processed blueberry products. J Agric Food Chem. 2009; 57(5):1896-1902.
nih.gov
-
Trost K, Golc-Wondra A, Prosek M, Milivojevic I. Anthocyanin degradation of blueberry-aronia nectar in glass compared with carton during storage. J Food Sci. 2008; 73(8):S405-11.
usda.gov
-
Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D. Drying and quality chraracteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. Food Science and Technology. 2008; 41(10):1962-72.
usda.gov
-
Shi J, Pan Z, McHugh TH, Wood D, Zhu Y, Avena-Bustillos RJ, Hirschberg E. Effect of berry size and sodium hydroxide pretreatment on the drying characteristics of blueberries under infrared radiation heating. J Food Sci. 2008; 73(6):E259-65.
usda.gov
-
Fan L, Forney CF, Song J, Doucette C, Jordan MA, McRae KB, Walker BA. Effect of hot water treatments on quality of highbush blueberries. J Food Sci. 2008; 73(6):M292-7.
usda.gov
-
Almenar E, Samsudin H, Auras R, Harte B, Rubino M. Postharvest shelf life extension of blueberries using a biodegradable package. Food Chem. 2008; 110(1):120-7.
usda.gov
-
Wang CY, Wang SY, Chen C. Increasing antioxidant activity and reducing decay of blueberries by essential oils. J Agric Food Chem. 2008; 56(10):3587-92.
nih.gov
-
Brownmiller C, Howard LR, Prior RL. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J Food Sci. 2008; 73(5):H72-9.
usda.gov
-
Perkins-Veazie P, Collins JK, Howard L. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest biology and technology. 2008; 47(3):280-5.
usda.gov
-
Brambilla A, Lo Scalzo R, Bertolo G, Torreggiani D. Steam-blanched highbush blueberry (Vaccinium corymbosum L.) juice: phenolic profile and antioxidant capacity in relation to cultivar selection. J Agric Food Chem. 2008; 56(8):2643-8.
nih.gov
-
Nindo CI, Tang J, Powers JR, Takhar PS. Rheological properties of blueberry puree for processing applications. Food Science and Technology. 2007; 40(2):292-9.
usda.gov
-
Schotsmans W, Molan A, MacKay B. Controlled atmosphere storage of rabbiteye blueberries enhances postharvest quality aspects. Postharvest biology and technology. 2007; 44(3):277-85.
usda.gov
-
Su M, Chien P. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) fluid products as affected by fermentation. Food Chem. 2007; 104(1):182-7.
usda.gov
-
Srivastava A, Akoh CC, Yi W, Fischer J, Krewer G. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. J Agric Food Chem. 2007; 55(7):2705-13.
nih.gov
-
Schmidt BM, Erdman JW Jr, Lila MA. Effects of food processing on blueberry antiproliferation and antioxidant activity. J Food Sci. 2005; 70(6):S389-94.
usda.gov
-
Nindo CI, Tang J, Powers JR, Singh P. Viscosity of blueberry and raspberry juices for processing applications. J Food Engineering. 2005; 69(3):343-350.
usda.gov
-
Lohachoompol V, Srzednicki G, Craske J. The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. J Biomed Biotechnol. 2004; 2004(5):248-252.
nih.gov
-
Lee J, Wrolstad RE. Extraction of anthocyanins and polyphenolics from blueberry processing waste. J Food Sci. 2004; 69(7):C564-73.
usda.gov
-
Rossi M, Giussani E, Morelli R, Lo Scalzo R, Nani RC, Torreggiani D. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research Intl. 2003; 36(9-10):999-1005.
usda.gov
-
Zheng Y, Wang CY, Wang SY, Zheng W. Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. J Agric Food Chem. 2003; 51(24):7162-9.
nih.gov
-
Lee J, Durst RW, Wrolstad RE. Impact of juice processing on blueberry anthocyanins and polyphenolics: Comparison of two pretreatments. J Food Sci. 2002; 67(5):1660-7.
wiley.com
-
Kader F, Irmouli M, Nicolas JP, Metche M. Involvement of blueberry peroxidase in the mechanisms of anthocyanin degradation in blueberry juice. J Food Sci. 2002; 67(3):910-5.
usda.gov
-
Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem. 2002; 50(4):893-8.
nih.gov
-
Main G, Faupel M, Morris J, McNew R. Quality and stability of blueberry juice blended with apple, grape and cranberry juice. J Food Qual. 2001; 24(2):111-25.
usda.gov
-
Skrede G, Wrolstad RE, Durst RW. Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci. 2000; 65(2):357-64.
usda.gov
-
Kalt W, Forney CF, Martin A, Prior RL. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem. 1999; 47(11):4638-44.
nih.gov
